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from this that IJ (t, cp (f)) = a, (t), whence the assertion made above also follows). A direct 

derivation of Eq.(5.3) has been given in /l/ where it was also shown that this equation is 
integrated in quadratures and a functional relationship is obtained which relates a=o(f,p(t)), 

=0 (1) and t. 
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THE RELATIONSHIP BETWEEN THE ENDOCHRONIC THEORY OF PLASTICITY 

AND THE "NEW" MEASURE OF INTERNAL TIME* 

YU.1. KADASHEVICH and A.B. MOSOLOV 

The transition from an earlier version of the endochronic theory of 
plasticity (ETP) to a theory with a "new" measure of internal time is 
considered together with the mutual relationship between the latter and 
flow theory. 

The endochronic theory of plasticity was initially put forward as a theory in which there 
was no yield surface (YS) /l/. This was its essential difference both from the well-known 
classical theories of plasticity (of the flow-theory type) and from the many modern theories 
which are based on the concept of a yield surface. Recently, however, a version of the 
isochronic theory of plasticity has become widely used which is based on a "new" measure of 
the internal time for which the Odqvist parameter /2-41 is actually used. There is already a 
yield surface in this version of the theory which may be considered as a rejection by the 
authors of this approach of the initial idea of constructing an analytical (non-singular) 
plasticity functional for arbitrary complex deformation processes. 

1. We shall use a vector representation of the loading and deformation processes. Let (r 
and e be the stress and deformation vectors respectively /5/. 

The ETP functional is written in the form 

(r = J (z - q) de (q) (1.‘) 

and is formally analogous to the linear viscoelasticity functional only, instead of the 
physical time, a new parameter 2, referred to as the internal time /l/, is used to describe 
the history of the deformation and loading processes. Generally speaking, the internal time 
z is assumed to be a functional of the deformation process. Several possible definitions of 
this quantity have been proposed. It was initially thought that 

dn=ds/f(s),&=jdel (1.2) 

where the function f(f>O) is responsible for the effects of isotropic strengthening (or 
weakening) of the material and is usually called the strengthening function. 

Refinement of the initial version of ETP proceeded in several directions. For instance, 
an alternative approach to the construction of certain ETP relationships was proposed in /6/. 
This approach was based on a more complex tensor-parametric form of writing the plasticity 
functional. 

*Prikt.Matem.Mekhan.,54,4,689-694,1990 
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Another route to the removal of the drawbacks of the initial version of ETP reduces 
/2, 3/ to the replacement of the internal time measure. In fact, instead of definition (2.2), 
it was proposed that one should use the new measure of internal time 

dz = @Jf (5) d5 = 1 de - xE-‘do 1 (1.3) 

as the parameter of the history of the deformation and loading processes, where E is the 
modulus of elasticity and x is an additional new parameter of the model. The physical 
meaning of this parameter was not discussed but it was assumed that XE[O,II. It should be 
noted that an analogous proposition had already been implicitly put forward in /7/ but the 
fact that no examples were given prevented any investigation of the advantages of the new 
approach. The introduction of a new measure of internal time enabled the description of 
experimental data within the framework of ETP to be improved considerably /8-g/*. (*These 
questions have been considered in the greatest detail in the paper: Mosolov A.B., Endochronic 
theory of plasticity, Preprint 353, Inst. Problem Mekhaniki, Akad. Nauk SSSR, Moscow, 1988.). 

The measure (1.3) with x= 1 very rapidly became used in the majority of papers con- 

cerned with ETP. In essence, the Odqvist parameter (the plastic length of an arc) was there- 
fore taken as the parameter which describes the history of the deformation process. This led 
to the need to consider singular kernels J and to introduce the concept of a yield surface. 
Correspondingly, the ETP functionals became written in the form /3/ 

(T = ! J (z - q) de,, (q), J (2) = zPJ(O) (2) (1.4) 

or in the form /4/ 

(1.5) 

where e, is the vector of the plastic deformations, J(O) is a singular kernel, and (rO is the 

limiting flow. 
It will be shown below that a limiting surface arises in the theory (1.1) and (1.3) as 

x-1 which may be identified with a classical yield surface. 
An alternative way of removing the drawbacks of the earlier versions of enochronic theory 

has been demonstrated in /6, lo-12/. In particular, it was recommended in these papers that 
an internal time should be introduced according to the formula 

dL = 1 de - (E-’ - ~/(a~, + fik)) do ( 

where (rO is the limiting flow, k is the strengthening factor and 8 is a small parameter. 
It can be shown that the parameter L is close to the Odqvist parameter but it is not 

identical to it. The theory does not have a yield surface. The results obtained within the 
framwork of this plasticity theory can differ appreciably from the corresponding results 
obtained on the basis of flow theory. This is particularly so in the case of cyclic processes. 

2. Let us now consider an ETP functional in the form of (l.l), (1.3) as x=1 .under 
the assumption that the kernel J(z) is a non-singular, fairly smooth function which, for 
example, is doubly differentiable with respect to 2. Since the plasticity functional necess- 
arily satisfies the hysteresis property /5/, it may be assumed that J'(z)<0 (here and 
subsequently, we shall denote an arbitrary function with respect to the corresponding argument 

by a prime). 
On differentiating relationship (l-l), we write the ETP functional in the form 

do = J&e + J’ (z - q) de(q) dz, J,, = J (0) (2.1) 

It follows from this that the modulus of elasticity E must be identified with the quan- 
tity Jo. From (2.1), we get 

It follows from this equality that either dr= 0 and Hooke's law da = Jo& is then 
satisfied or dz+O and the equality 
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holds. 
Actually, condition (2.2) now defines the limiting surface. Let us investigate this 

condition in greater detail. 
Let us define the plastic deformations by the equality 

de, = de- Jo-‘do 

On susbstituting (2.3) into (1.1) and integrating by parts, we have 

(2.3) 

n)e (rl) drl = J, 
s 
J (2-n) de,,(n) 

Differentiating this relationship with respect to z and passing to the limit as z-+0, 
we obtain (Jo' = I‘ (0)) 

e (SO) = -(JaVlJ,') f (0) h,id% I++0 

The resulting relationship simply means that a limiting surface arises in ETP with x= 1 
and that the initial position of this surface is described by the equation (we recall that 
J’ (4 < 0) 

ou = 00, 00 = -(JoVJ,‘) f (‘3 

Let us now consider the evolution of the limiting surface during the deformation process. 
In order to do this, we will make use of relationship (2.2). By substituting the quantity 

de,, defined by (2.3) into this relationship and integrating by parts, we obtain 

J’(~-+‘hbQ++(4 =Jof(%) ’ I 
0 

We will now define a vector R by the equality 

7. * 

R(z)=-$iS J’(.-q)dep(q)-&S J’(z--q)o(q)dq 

0 0 

(2.4) 

(2.5) 

Relationship (2.4) can then be represented in the form 

I (f - 8 I = -_(Jo*lJo’) f (E) = co (%I (2.6) 

We conclude from this that the limiting surface is a sphere of radius oO(%), the centre 
of which is displaced to the point R. The function f(%) defines the dimensions of the 
limiting surface and, in this sense, is actually a hardening function. 

It may be verified that the vector R will be identically equal to zero only if J(z)=Eeea* 

In this case, the ETP functional is conveniently written in differential form which is 
identical to the three-term plasticity law /5/: da= Ede-cmdr. Such a model describes a 
material with isotropic strengthening. 

When x=1, the functional (1.1) can be written in the form of (1.4) which explicitly 
takes account of the presence of a yield surface. The kernels J(z) and Jo (z) are found to 
he associated by the relationship 

Job)+&-‘i)J&dq=--J’(z)+ ($,)*Jn(.) 

0 

o,, = - J,=lJ,’ 

Let us now consider a simple example when the kernel J is taken in the form 

J (L) = p + Ee- 

We will show by direct calculations that, in this case 

4 (%) = (.R + PYf (EY(e.0 R = plep, RI = P (A + NE 

Consequently, a model of a material with a combination of transitional-isotropic hardening 
is obtained with such a kernel. The translational hardening is linear while the isotropic 
hardening is described by the function f(5). 

Using (2.1) and (2.6), the plasticity law can be rewritten in the form 

de, = I@- R)/e, (%)I d% (2.7) 

This equation holds only if the vector B lies on the limiting surface. The matching 
conditions which are conventional in the theory of plasticity lead to a relationship which 
enables the plasticity law to be rewritten in the form 
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de, = (G - R) [(To* (5) oo’(E)]-’ (U-R) (do - dR) 

By differentiating relationship (2.7) with respect to E, we obtain 

It follows from the definition of R that 

dtz de, 
4 = - J, x + q (6) 

where q (0 are terms which are independent of de, (E). 
Using (2.8) and (2.9) and the definition of de,, we have 

On scalar multiplying de by 'de,,, we get 

(2.9) 

(2.10) 

Since dE>O, Eq.(2.10) is valid only if nde>O, where a=(~-RR)/%(E). 
The governing plastic deformation equation can now be written in the form 

de = Jo-Ida + Q-b (ride) 

where the last term is assumed to be different from zero only if )a!= i and n&>O. When 
any of these conditions break down, plastic deformation ceases and an elastic process occurs. 

Hence, the ETP relationships when r= 1 essentially reduce to the analogous relation- 
ships in flow theory in which the yield surface is described by expression (2.6), the dis- 
placement of the centre of the yield surface is determined by the vector R and the Odqvist 
parameter is used as the hardening parameter. 

However, it is pertinent to note here that the theory of plasticity with x=i is close 
in its properties to the theory of plasticity proposed by Backhaus /13/ 

h 

~=.(b)~g+ G,(I-k’)C&‘)d~dl. 
s 
0 

which is not mentioned in /2-4f. 
Such a development of a plasticity theory, which was initially considered as a theory 

without a yield surface, can hardly be considered as being coherent. 
The condition x=1 is excessively rigorous. It has been shown in /14/ that a well 

defined meaning can be ascribed to the parameter x and, moreover, it may not only differ 
from unity but also vary during the course of the deformation process. Furthermore, it has 
been shown that the inequality XC1 is essential for describing a number of effects which 
are observed during the complex deformation of metals 18, 9/. 

3. So, a yield surface arises in ETP when x = 1. When X<i, there is now, of course, 
no such surface but, for purposes of comparison with the classical theories of plasticity and, 
in particular, with flow theory or ETP when x= 1, the concept of a hypothetical flow surface 
can be introduced. 

As is well-known, the yield surface is determined in experiments by making a certain 
assumption. Most frequently, the margin on the magnitude of the residual deformations is 
specified. The position, form and dimensions of the yield surface depend on the magnitude 
of the adopted margin. It is also possible to do the same in the case of BTP. 

We shall say that a quasi-elastic deformation process from a certain state e is realized,, 
during loading, with an accuracy 6 if 

I %I& I < 6 (3.1) 

We shall call the domain of the stress space Qh at each point of which a quasi-elastic 
deformation process is realized under any load the domain of quasi-elasticity. We shall call 
the boundary of this domain S,= an, the hypothetical yield surface. Its dimensions, form 
and position in the stress space therefore depend on the magnitude of the margin 6 which 
is adopted. 

Let us construct the hypothetical yield surface for a ETP defined by relationships (1.1). 



(1.3) with x<i. 
For the second term on the right-hand side of relationship (2.1), we introduce the 

notation A&. It is then possible to write that 

On substituting (2.1) into the definition of dz (1.3), we get 

On squaring this equation, we arrive at a quadratic equation for dslds, the root of which 
(the second root is constant and therefore discarded) can be written in the form 

where y is the angle between the vectors de@ and A. 
The quantity maxy @/do) is of interest since, if the inequality (3.1) is satisfied in 

the case of a da which corresponds to the maximum da& then it will also hold for any 
other possible da. 

It follows from (3.2) that dzlds takes a minimum value when cosy=,-i and ma% (da/&)= 

(1 - X)l(f - VP). With such a value of d&ia, the inequality (3.1) takes the form 

A, < (4 + x6 - x)-l Wof 

It follows from the results of Sect.2 that 

A.-Ii J'(z-q)de(+-+-RI 
0 

and, hence, we finally obtain that the domain of quasi-elasticity is defined by the inequality 

The hypothetical yield surface S, is correspondingly defined by the equation la-R(= 
0, (0. Hence, when x<i the hypothetical yield surface in ETP, like the previously in- 
troduced limiting surface, is defined by essentially the same laws. The properties of the 
ETP models for x= 1 and for r<l are quite different. When x<i, the surface S6 is a 
purely hypothetical concept and does not lead to a breakdown in the analytical nature of the 
theory. During deformation, the stress vector (r may pierce this surface, which is not 
accompanied by any singularities. 

When X<l, there is a plasticity layer in ETP in which the plastic deformations are 
substantial, that is, inequality (3.1) breaks down. This layer is defined by the inequalities 

06 (5) < 1s~ - R I < 00 (5) 

When x-1, the plasticity layer collapses into the yield surface. The structure and 
properties of the plasticity, layer been considered in greater detail in /15/. 

In concluding, we would make one remark. In the arguments which have been presented 
above it was important that the kernel J was non-singular. If this is not the case then a 
yield surface also cannot exist. 

In a number of papers on ETP the use of plasticity functionals in the form of (1.4) with 
a singular kernel J has been proposed and non-singular approximations of this kernel are used 
in actual calculations /17, 181. It can be shown that, in this case, a "replacement" of the 
model actually takes place implicity and that, in fact, the version of ETP with x<l is 
being considered in the calculations. 

In order to prove this, we rewrite the functional (1.4) in the form 

do = J,de, + J’ (z -q) de, (q) dz 

By substituting the definition of de, from this, we obtain that the "present" modulus of 
elasticity is not E but El= xE, where r = J,l(E + Jo) < i and therefore 

de = 1 de - E-‘do 1 = 1 de - XE,-‘da 1 
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It should therefore be acknowledged that the proposal due to Valanis /2/: a~= @=I&- 

@-'doI, %<I is the most successful of the simplest forms of writing the "new" internal 
time measure. Attempts to identify the parameter L with the Odqvist parameter reduce the 
possibilities of ETP. The case when X<i. but x- 1 is of the greatest interest. 
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